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Abstract 29 

Cardiovascular disease (CVD) is the leading cause of death worldwide, and its risk is 30 

inseparable from metabolic abnormalities. Through summary-data-based Mendelian 31 

randomization and colocalization analysis, we investigated the causal relationships 32 

between plasma proteins, 6 cardiovascular diseases, and 19 metabolic phenotypes. We 33 

identified 49 proteins genetically associated with CVDs, validated across two platforms, 34 

with 35 associated with one or more metabolic phenotypes and six having support of 35 

colocalization. These six candidate proteins were classified into three categories based on 36 

the utilization of drugs that are currently approved or in clinical trial phases, with PCSK9 37 

already successful in drug development for CVDs and hypercholesterolemia. DUSP13B, 38 

LRIG1, APOH, INHBC, and GUSB also showed high drug potential. Further phenome-39 

wide Mendelian randomization analysis indicated no potential side effects from targeting 40 

PCSK9 and APOH. This study revealed causal proteins for the onset of cardiovascular 41 

diseases and metabolic abnormalities, which contributed to understanding the molecular 42 

mechanisms underlying disease pathogenesis and the development of related drugs. 43 

 44 

Keywords: Mendelian randomization; cardiovascular diseases; metabolic phenotypes; 45 

proteome; drug target. 46 

 47 

Teaser 48 

In addition to PCSK9, DUSP13B, LRIG1, APOH, INHBC, and GUSB were also 49 

genetically causally associated with metabolic traits and cardiovascular diseases and 50 

provide insights into druggable targets. 51 

  52 
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MAIN TEXT 53 

Introduction 54 

Cardiovascular disease (CVD) encompasses a range of conditions affecting the heart and 55 

blood vessels (1), which stands as a leading cause of death globally, with a notably rising 56 

prevalence in developing countries and regions (1, 2). Behavioral risk factors, including 57 

elevated blood pressure, high blood sugar, increased cholesterol levels, and obesity, 58 

significantly contribute to CVD risk. Addressing these metabolic abnormalities or 59 

treating associated metabolic diseases can mitigate the risk of developing cardiovascular 60 

conditions. While current clinical treatments for hypertension, dyslipidemia, and diabetes 61 

have been applied to CVD, there is a critical need to enhance their effectiveness (3-7).  62 

 63 

Previous studies have reported that circulating proteins play a crucial role in the onset of 64 

cardiovascular diseases (CVD) and may possess therapeutic potential (8). As key 65 

metabolic products and signaling molecules, plasma proteins participate in physiological 66 

and pathological processes within the body. Proteins closely associated with specific 67 

diseases can serve as biomarkers for diagnosis or as targets for pharmaceutical 68 

intervention. Notably, research has highlighted the involvement of the plasma protein 69 

PCSK9 in lipid metabolism, and the introduction of PCSK9 inhibitors has significantly 70 

impacted lipid management and reduced cardiovascular risk (9, 10). Therefore, targeting 71 

plasma proteins offers a promising strategy for developing treatments for both 72 

cardiovascular and metabolic diseases. 73 

 74 

Increasing evidence suggests that genetic data can potentially be used to identify and 75 

prioritize new drug targets and therapeutic indications (11). Mendelian randomization 76 

(MR), an approach employing genetic variants as instrumental variables to assess the 77 

impact of exposure on a specific outcome (12), is progressively being utilized to 78 

determine the causal links between diseases and associated proteins or genes (13, 14), 79 

facilitating the identification of druggable targets. Recently, Kim et al. conducted multi-80 

omics and multi-trait analyses through MR to identify 30 potential therapeutic targets for 81 

dyslipidemia, showcasing the approach's utility in drug discovery and development (15). 82 

 83 

Here, we applied a proteome-wide summary data-based MR (SMR) analysis and 84 

colocalization analysis, leveraging the top single nucleotide polymorphism (SNP) from 85 

protein quantitative trait loci (pQTL) studies as instruments. We analyzed the outcomes 86 

from genome-wide association studies (GWAS) on atrial fibrillation (AF), coronary 87 

artery disease (CAD), heart failure (HF), venous thromboembolism (VTE), peripheral 88 

artery disease (PAD), Stroke, and 19 kinds of metabolic phenotypes to ascertain causal 89 

links between cardiometabolic diseases and plasma proteins, highlighting the potential of 90 

proteins as unified targets for addressing metabolic dysfunctions and cardiovascular 91 

conditions. To further explore the clinical relevance of these candidate proteins, we 92 

assessed their druggability through a comprehensive triple-analysis approach: (i) 93 

exploring the repurposing of approved drugs and drugs in phases of clinical trials; (ii) 94 
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evaluating the druggability of potential target proteins; (iii) revealing phenome-wide 95 

consequential effects. The flow diagram of our study is basically displayed in Figure 1. 96 

 97 

Results 98 

Proteome-wide MR and colocalization analysis identified associations between 99 

plasma proteins and CVDs 100 

The proteome-wide MR analysis estimated the association between plasma proteins with 101 

pQTL information and the risk of six major CVDs. After strict FDR correction (PFDR < 102 

0.05) and HEIDI test (PHEIDI > 0.01) for multiple testing, SMR analysis identified 189 103 

proteins that showed causal relationships with the risk of CVDs in the discovery study 104 

(Figure 2a). In the combined analysis with replication study data, genetically predicted 105 

levels of 52 proteins were significantly associated with CVDs (Figure 2b, Table S1, S2). 106 

Consistent directional associations for 49 proteins with CVDs across both studies were 107 

observed, excluding S100 calcium-binding protein A16 (S100A16), angiopoietin-like 4 108 

(ANGPTL4) and Fc gamma receptor II B (FCGR2B), within which 4 proteins causally 109 

related to two different CVDs. Per SD increase in genetically predicted levels of protein, 110 

the odds ratio of cardiovascular diseases ranged from 0.56 (95% confidence interval [CI], 111 

0.47 to 0.66) for protein S (PROS1) to 2.04 (95% CI, 1.74 to 2.39) for coagulation factor 112 

II (F2). It was genetically predicted that higher levels of five proteins were associated 113 

with decreased risk of AF, while eleven proteins were related to CAD, eight to VTE, and 114 

one to stroke. Conversely, elevated levels of two proteins were associated with a higher 115 

risk of AF, ten with CAD, twelve with VTE, and two each with stroke and PAD. 116 

Significantly, four proteins—dual-specificity phosphatase 13B (DUSP13B), 117 

asialoglycoprotein receptor 1 (ASGR1), proprotein convertase subtilisin/kexin type 9 118 

(PCSK9), and F2—were identified across multiple CVD conditions. A higher abundance 119 

of PCSK9 correlated with an increased risk of CAD and PAD, while F2 levels were 120 

causally associated with a greater risk of VTE and stroke. DUSP13B showed an opposite 121 

effect between AF and CAD, as did ASGR1 between VTE and CAD. 122 

 123 

Among the 49 unique SMR-identified CVDs-related proteins, 16 proteins had high 124 

support of colocalization analysis (PPH4 ≥ 0.8), and 4 proteins had medium support of 125 

colocalization analysis (0.8 > PPH4 ≥ 0.5) (Figure 2c, Table S5). Four proteins had high 126 

support of colocalization with AF, including beta-glucuronidase (GUSB), DUSP13B, 127 

spondin 1 (SPON1), and tumor necrosis factor superfamily member 12 (TNFSF12). 128 

Seven plasma proteins were strongly colocalized with VTE, which were epidermal 129 

growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1), PROC, 130 

serine proteinase inhibitor clade E member 2 (SERPINE2), PROS1, protein phosphatase 131 

1 regulatory inhibitor subunit 14A (PPP1R14A), glycoprotein 6 (GP6) and 132 

chymotrypsin-like elastase family member 2A (CELA2A; PPH4 ≥ 0.8 in discovery study 133 

but 0.8> PPH4 ≥ 0.5 in replication). We also found that PCSK9, hepatocyte growth 134 

factor activator (HGFAC), and inhibin beta C chain (INHBC) had high support of 135 

genetic colocalization with CAD, and coagulation Factor XI (F11) and scavenger 136 

receptor class A member 5 (SCARA5) with stroke. The only protein that had strong 137 
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supportive evidence with PAD was PCSK9, which can also be found in CAD. Besides, 138 

leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1), apolipoprotein H 139 

(APOH), thrombospondin 2 (THBS2), and F2 that had medium support with one of 140 

CVDs were also used in further analysis. 141 

 142 

Causal connection and colocalization between CVDs-related proteins and metabolic 143 

traits 144 

The relationships between 49 CVDs-related plasma proteins and 19 major phenotypes in 145 

7 kinds of diverse metabolic traits were analyzed and displayed in the SMR method 146 

(Table S3, S4). Among the 49 unique CVDs-related proteins, 35 proteins were causally 147 

associated with at least one metabolism-related trait after adjusting for multiple testing 148 

(PFDR < 0.05) and HEIDI test (PHEIDI > 0.01). No CVDs-related proteins survived SMR 149 

analysis with two-hour glucose (2hGlu) and fasting insulin (FI) as outcomes under 150 

multiple constraints. The directions of the associations between proteins and metabolic 151 

traits were shown in Figure 3a overall. For instance, per SD increase, the changes in 152 

systolic blood pressure (SBP) ranged from -1.30 (95% CI, -1.57 to -1.05) for NAD 153 

kinase (NADK) to 0.58 (95% CI, 0.31 to 0.85) for tryptophanyl-tRNA synthetase 1 154 

(WARS1). In the four overlapped CVDs-related proteins, genetically predicted levels of 155 

DUSP13B had an inverse association with CAD, body mass index (BMI), and waist hip 156 

ratio (WHR) but a positive association with AF and high-density-lipoprotein (HDL). 157 

Levels of PCSK9 were significantly associated with inverse levels of HDL and WHR. 158 

However, while elevated levels of F2 were associated with lower levels of low-density-159 

lipoprotein (LDL), they also increased the risk of VTE and stroke. The SMR results for 160 

ASGR1 and metabolic phenotypes were not replicable in the deCODE Health study. 161 

 162 

Fifteen proteins were supported by colocalization analysis with at least one metabolic 163 

phenotype after overlapping the replication study (Figure 3b, Table S6). In detail, five 164 

proteins had high support of genetic colocalization (PPH4 > 0.8) with fasting glucose 165 

(FG) or glycated hemoglobin levels (HbA1c) in glycemic traits, which were T cell 166 

immunoglobulin and mucin domain containing 4 (TIMD4), sex hormone-binding 167 

globulin (SHBG), catechol-O-methyltransferase (COMT), WARS1 and INHBC. Among 168 

the five proteins that had strong support evidence of colocalization (PPH4 > 0.8) with 169 

lipidemic traits, COMT was supported with all four lipidemic traits, including HDL, 170 

LDL, triglyceride (TG) and total cholesterol (TC), with the protein levels positively 171 

correlated with HDL and negatively correlated with LDL. TIMD4 displayed the most 172 

significant MR result (PFDR=1.67E-61) and was colocalized with LDL, TG, and TC, 173 

whose level was inversely correlated with the three phenotypes. Both DUSP13B and 174 

PCSK9 were supported only with HDL-C and cluster of differentiation 36 (CD36) only 175 

with TG in strong evidence. Besides, macrophage migration inhibitory factor (MIF) and 176 

GUSB had moderate support evidence (0.8≥PPH4>0.5) with TG. Six proteins showed 177 

evidence of colocalization (PPH4 > 0.5) with liver-related traits. APOH strongly 178 

colocalized with all three enzymes, which were alanine aminotransferase (ALT), alkaline 179 

phosphatase (ALP), and γ-glutamyl transferase (GGT), and other five proteins (MIF, 180 
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INHBC, growth arrest-specific 6 (GAS6), inter-alpha-trypsin inhibitor heavy chain H3 181 

(ITIH3), layilin (LAYN)) were associated with one enzyme phenotype. Interestingly, 182 

APOH also showed powerful evidence (PPH4 > 0.8) colocalized with C-reactive protein 183 

(CRP), an inflammatory biomarker. And the evidence was observed between LRIG1 and 184 

SBP or pulse pressure (PP), and also between LRIG1 and BMI, indicating a high 185 

probability for a shared causal variant between LRIG1 level and levels of blood pressure 186 

and BMI. In kidney-related traits, INHBC and fructose-1,6-bisphosphatase 1 (FBP1) 187 

were supported by colocalization with estimated glomerular filtration rate (eGFR). 188 

 189 

Prediction of potential druggable targets 190 

Integrating the colocalization analysis results, we identified six plasma proteins that had 191 

colocalization evidence with both cardiovascular diseases and metabolic phenotypes, 192 

including LRIG1, INHBC, GUSB, APOH, DUSP13B, and PCSK9 (Figure 4). It is 193 

noticeable that decreased levels of PCSK9 were genetically associated with a reduced 194 

risk of CAD and PAD, and with increased HDL levels in vivo, with strong evidence of 195 

colocalization. Meanwhile, increased levels of APOH were causally associated with a 196 

decreased risk of CAD, lower levels of CRP, and reductions in two liver function-related 197 

enzymes: GGT and ALT. In addition, APOH was enriched in multiple pathways such as 198 

the cholesterol metabolism and regulation of leukocyte chemotaxis, following pathway 199 

enrichment analysis of 35 causal cardiometabolic proteins. Similarly, GUSB was 200 

enriched in metabolism of carbohydrates and Neutrophil degranulation (Table S8). 201 

Increased GUSB levels were correlated with a lower risk of AF and TG but with higher 202 

levels of ALT and GGT. Reduced INHBC levels may lead to a lower risk of CAD, 203 

reduced levels of ALP and FG, but elevated levels of eGFR. While high levels of LRIG1 204 

are associated with reduced risk of AF and obesity, they are also highly associated with 205 

increased blood pressure. Besides, increased levels of DUSP13B protein were associated 206 

with increased HDL levels and higher AF risk. 207 

 208 

To evaluate the drug development and prioritize the druggability of the 6 protein targets, 209 

we comprehensively searched the ChEMBL database (16), the Drug Gene Interaction 210 

Database (DGIdb) (17), and Therapeutic Target Database (TTD) (18) and classified the 211 

proteins into three categories. PCSK9 was classified into category 1 whose targeted-212 

drugs has been approved or in clinical trials to treat CVDs or metabolic diseases. 213 

Actually, PCSK9 inhibitors have been approved for lowering cholesterol levels in 214 

familial hypercholesterolemia (FH) and are also explored in clinical trials for their 215 

potential to provide cardiovascular benefits to patients at risk of CVDs. INHBC, GUSB, 216 

and APOH were classified into category 2, which were targeted for diseases other than 217 

cardiovascular and metabolic diseases. In recent clinical trials, INHBC has been explored 218 

as a target for ovarian cancer treatment. Concurrently, GUSB has achieved success in 219 

treating mucopolysaccharidosis and periodontal disease, serving as an effective enzyme 220 

replacement therapy. Additionally, APOH as a therapeutic target was tried for Hughes 221 

syndrome (also known as antiphospholipid syndrome), although its efficacy requires 222 
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further evaluation. DUSP13B and LRIG1 were category 3 that acted as druggable 223 

potential targets. 224 

 225 

PheWAS exploring the possible indications and adverse effects of targeted proteins 226 

To explore the possible indications and unwanted effects of the 6 proteins, a Phenome-227 

wide association study (PheWAS) was conducted across phenotypes (783 phenotype data 228 

from Lee UK Biobank) with at least 500 cases. Candidate proteins all passed significant 229 

correction and heterogeneity testing in phenome-wide MR, except for GUSB (Figure 4, 230 

Table S7). PCSK9 was one of the significant targets supported by PheWAS. In addition 231 

to CAD and PAD, the onset risks of multiple cardiovascular diseases are positively 232 

associated with PCSK9 levels, and no noticeable adverse effect was identified (no traits 233 

with the negative beta). The utilization of drugs that increase levels of APOH may 234 

reduce the risk of hypercholesterolemia (OR [95% CI]: 0.93 [0.90, 0.96]) and gout (OR 235 

[95% CI]: 0.84 [0.76, 0.92]). The negative correlation between LRIG1 and atrial 236 

fibrillation and flutter was supported by the PheWAS analysis (OR [95% CI]: 0.93 [0.90, 237 

0.96]). Reduced levels of INHBC were causally associated with lower risks of CAD, 238 

myocardial infarction and gout but with side effects of asthma (OR [95% CI]: 0.94 [0.91, 239 

0.97]) at an FDR <0.05 threshold level. In addition to being associated with high levels 240 

of HDL, the abundance of DUSP13B was inversely associated with multiple diseases, 241 

including hypothyroidism (OR [95% CI]: 0.83 [0.76, 0.92]), cataract (OR [95% CI]: 0.83 242 

[0.77, 0.91]), hypertension (OR [95% CI]: 0.91 [0.87, 0.96]), angina pectoris (OR [95% 243 

CI]: 0.83 [0.76, 0.91]), coronary atherosclerosis (OR [95% CI]: 0.84 [0.77, 0.91])and 244 

ischemic heart disease (IHD, also known as CAD; OR [95% CI]: 0.85 [0.80, 0.91]), 245 

whereas the abundance was positively associated with AF. Interestingly, 80% of PCSK9-246 

associated phenotypes overlapped with DUSP13B-associated phenotypes under the 247 

threshold of FDR <0.05. 248 

 249 

Discussion 250 

This study investigated the association between 2,011 plasma proteins and 251 

cardiometabolic diseases and evaluated the potential druggable targets. We conducted 252 

proteome-wide MR and colocalization analyses to identify causal plasma proteins on 253 

CVDs and metabolic traits exploiting genetic variants. Such an approach improved 254 

causal inference by minimizing biases from confounding and reverse causation. The MR 255 

results predicted that 49 unique plasma proteins had causal associations with at least one 256 

cardiovascular disease, of which 35 proteins were also associated with diverse metabolic 257 

traits. Six proteins had the support of colocalization with cardiovascular diseases and 258 

metabolic traits at the same time, which were classified as candidate proteins for 259 

druggability prioritization. Our study found that genetically predicted higher levels of 260 

LRIG1 and GUSB were inversely associated with AF risks, whereas higher levels of 261 

circulating DUSP13B were positively associated with AF risks. We also found that 262 

genetically predicted higher levels of circulating PCSK9 and INHBC and lower levels of 263 

APOH were associated with an increased risk of CAD, with PCSK9 also associated with 264 

a high risk of PAD. Besides, the six proteins are associated with different metabolic 265 
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traits, some of which were indications of the potential targets and a few as adverse 266 

effects. PheWAS analysis further revealed the wide range of health benefits and 267 

anticipated adverse effects after targeting the six candidate proteins (i.e., PCSK9, APOH, 268 

LRIG1, GUSB, DUSP13B, and INHBC). 269 

 270 

Our study corroborated some previously identified associations between plasma proteins 271 

and cardiovascular disease, such as the associations of AF with IL6R (19), CAD with 272 

ASGR1 (20) and COL6A3 (21), and VTE with SHBG (22) and PROC (23). Some well-273 

studied proteins associated with metabolic diseases or traits were successfully identified, 274 

such as SPON1 (24), COMT (25), SHBG (26), and CD36 (27). Of note, PCSK9, one of 275 

the 6 candidate proteins, has already been approved for use or is under clinical trials for 276 

hypercholesterolemia and cardiovascular disease (9, 10, 28), indicating the reliability of 277 

data sources and validity of research approaches in this study. However, the study did not 278 

pinpoint well-known proteins that have been described in previous studies to be 279 

associated with both cardiovascular and metabolic diseases, like tumor necrosis factor-280 

alpha (TNF-α) (29, 30) and insulin-like growth factor 1 receptor (IGF1R) (31), which 281 

was non-significant with multiple testing or unrepeatable after datasets overlapping. 282 

However, this multiplex correction strategy was in accord with one of the study's 283 

purposes, which was to find plasma proteins that are strongly associated with 284 

cardiometabolic disease. 285 

 286 

In addition to PCSK9, we observed that five proteins were more likely to be causally 287 

related to cardiometabolic diseases than other plasma proteins, including INHBC, 288 

APOH, GUSB, LRIG1, and DUSP13B. Our study was concordant with an 289 

epidemiological study, establishing an inverse relationship between the abundance of 290 

INHBC and eGFR levels (32). The causal correlation of INHBC with eGFR and FG 291 

suggests that it may play a role in blood glucose homeostasis and normal renal function, 292 

although the mechanism by which it promotes renal cell proliferation in the pathogenesis 293 

of diabetic nephropathy has not yet been elucidated (33) As a member of the TGF-β 294 

family, the function of INHBC in regulating inflammatory responses and cell 295 

proliferation may be related to the pathogenesis of cardiovascular diseases, especially 296 

atherosclerosis and myocardial infarction with chronic inflammatory processes. 297 

Likewise, the role of DUSP13B in inflammation regulation, cell proliferation, and 298 

signaling transduction (34) may suggest its molecular mechanisms in cardiovascular 299 

disease. Due to the important role of GUSB in female estrogen metabolism (35) and 300 

periodontitis development(36), abnormal activity may lead to enhanced cellular stress 301 

and inflammatory responses. GUSB has also been reported as an inherited metabolic 302 

disorder factor related to carbohydrate metabolism, leading to functional or structural 303 

lesions of the heart (37). Another interesting protein, APOH, associated with 304 

cardiometabolic disease, has been found to maintain blood fluidity and prevent 305 

nonspecific thrombosis, and it was revealed as a new candidate gene associated with 306 

thrombosis (38). Elevated APOH levels due to increased hepatic synthesis are strongly 307 

associated with MS changes and vascular disease risk in type 2 diabetes patients, 308 
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proposing the idea of APOH as a clinical marker of cardiovascular disease risk (39). 309 

Possibly caused by pleiotropy assessment, our colocalization analysis did not capture the 310 

association of APOH with lipidemic traits. LRIG1 has been reported to inhibit the 311 

proliferation of tumor cells (40) and the regulation of tissue homeostasis (41), which is 312 

one of the important pathogenesis mechanisms of cardiovascular diseases. By regulating 313 

EGFR signal and its related pathways (42), LRIG1 may indirectly affect inflammation 314 

and other metabolic regulation-related signaling pathways such as obesity and insulin 315 

resistance (43). The candidate proteins except PCSK9 are mostly related to the 316 

inflammatory response and the regulation of human metabolism, verified by pathway 317 

enrichment, and may therefore be appropriately considered as potential targets for the 318 

treatment of cardiometabolic disease. 319 

 320 

Limitations of this analysis deserve to be noted. First, although our MR analyzed causal 321 

plasma proteins from two independent sources to increase the power, it is likely to 322 

overlook some weak associations and neglect viable therapeutic targets. However, all of 323 

the analyses on causality and colocalization were based on reproducible results from 324 

independent datasets of genetic variants from the UKB and deCODE, the bias introduced 325 

by the data source was reduced. Secondly, we used large sample size GWASs to discover 326 

more associated causal proteins, and restricted the scope of analysis to the European 327 

population to minimize population structure bias; however, it limits the generalization of 328 

our findings to other populations. As larger GWAS datasets from multiple populations 329 

become available, the depth of our analysis may be further improved. Third, although we 330 

focused the drug targets on 6 plasma proteins, this does not necessarily mean that the 331 

remaining proteins cannot be treated with drugs. Our research aims to narrow the scope 332 

of drug development targets and reduce their time and resource costs. Lastly, some 333 

approved drug targets for abnormal conditions are not included among our 6 protein 334 

candidates, such as the COMT-targeted drug LOMITAPIDE, which is used to treat 335 

multiple dyslipidemias (including hypercholesterolemia, type II hyperlipoproteinemia 336 

and hyperlipidemia) and cardiovascular disease, and the SHBG-targeted drug 337 

LISINOPRIL, which is used in cardiovascular disease (including heart failure, 338 

myocardial infarction, arterial disease, stroke and hypertrophy), hypercholesterolemia, 339 

hypertension, non-alcoholic fat liver and atherosclerosis. 340 

 341 

In conclusion, this study revealed 35 causal proteins for the onset of cardiometabolic 342 

diseases and provided 6 promising previously unknown targets for drug development, 343 

including PCSK9, INHBC, APOH, GUSB, LRIG1 and DUSP13B, which suggest the 344 

roles of inflammation and cell proliferation in cardiometabolic progression. Drug 345 

repurposing targeting INHBC, APOH and GUSB need to be verified in future trials. 346 

 347 

Materials and Methods 348 

Study design 349 

This study consisted of two parts: a proteome-wide summary data-based MR (SMR) 350 

analysis that used single-nucleotide polymorphisms (SNPs) as instrument variables to 351 
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identify cardiometabolic-related plasma proteins, a colocalization analysis and a 352 

phenome-wide association study (PheWAS) analysis to explore protein targets with the 353 

greatest druggable potential. 354 

 355 

Data sources for plasma proteins 356 

Plasma proteome data were obtained from two large-scale protein quantitative trait loci 357 

(pQTL) studies: the UK Biobank Pharma Proteomics Project (UKB-PPP) (44) and the 358 

deCODE Health study (45). UKB-PPP conducted proteomic analysis on plasma samples 359 

from 34,557 participants through the Olink platform and collected data on 2,011 360 

proteins. Likewise, cis data on 1,812 proteins were collected from the deCODE Health 361 

study, where 35,559 participants were involved using the SomaScan platform. Cis-362 

single-nucleotide polymorphisms (cis-SNPs), defined as SNPs within 1Mb from the 363 

transcription start sites (TSS) of the gene, were selected from protein quantitative trait 364 

loci studies that associated with the abundance of plasma proteins at the genome-wide 365 

significant level (P < 5 × 10−8) and used as instrumental variables. In the SMR analysis, 366 

the UKB-PPP served as the discovery study and the deCODE Health study as the 367 

replication study. We presented the results for the overlapping proteins with shared 368 

directional relationships in SMR and colocalization analyses from both studies to ensure 369 

consistency of results across different proteomic analyzing platforms. 370 

 371 

Genome-wide association study (GWAS) data sources 372 

Six major cardiovascular diseases (CVDs) were included in our study, which were atrial 373 

fibrillation (AF; N cases = 60,620, N controls = 970,216), heart failure (HF; N cases = 374 

47,309, N controls = 930,014), Stroke (N cases = 73,652, N controls = 1,234,808), 375 

venous thromboembolism (VTE; N cases = 81,190, N controls = 1,419,671), coronary 376 

artery disease (CAD; N cases = 181,522, N controls = 984,168) and peripheral artery 377 

disease (PAD; N cases = 12,086, N controls = 499,548). All participants in the studies 378 

are European. In addition to cardiovascular diseases, our study also included summary-379 

level data of GWAS for the 19 metabolic phenotypes across seven kinds of different 380 

metabolic traits, which were available in the GIANT Consortium (GIANT), UKB, 381 

International Consortium of Blood Pressure-Genome Wide Association Studies (ICBP), 382 

the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), the 383 

CKDGen Consortium and Global Lipids Genetics Consortium (GLGC). The nineteen 384 

metabolic phenotypes included body mass index (BMI; N = 806,834) and waist hip ratio 385 

(WHR; N = 697,734) for anthropometric traits; systolic blood pressure (SBP; N = 386 

757,601), diastolic blood pressure (DBP; N = 757,601) and pulse pressure (PP; N = 387 

757,601) for blood pressure traits; fasting insulin (FI; N = 151,013), fasting glucose (FG; 388 

N = 200,622), two-hour glucose (2hGlu; N = 63,396) and glycated hemoglobin levels 389 

(HbA1c; N = 146,806) for glycemic traits; low-density-lipoprotein cholesterol (LDL-C; 390 

N = 1,231,289), high-density-lipoprotein cholesterol (HDL-C; N = 1,244,580), 391 

triglyceride (TG; N = 1,253,277) and total cholesterol (TC; N = 1,320,016) for lipidemic 392 

traits; alanine aminotransferase (ALT; N = 437,267), alkaline phosphatase (ALP; N = 393 

437,438) and γ-glutamyl transferase (GGT; N = 437,194) for liver-related traits; 394 
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estimated glomerular filtration rate (eGFR; N = 1,004,040) and uric acid (UA; N = 395 

288,649) for kidney-related traits; and C-reactive protein (CRP; N = 575,531) as an 396 

inflammatory biomarker. The detailed sources of data our analyses based on were listed 397 

in Table 1. 398 

 399 

Summary-data-based Mendelian randomization analysis 400 

We conducted SMR analysis to integrate summary statistics from GWAS and pQTL 401 

studies and detect causality associations between each circulating protein and multiple 402 

complex traits, including CVDs and metabolic traits. SMR is a research method that 403 

combines GWAS data with quantitative trait loci (QTL) data to identify quantitative 404 

traits with potential causal effects on diseases. The genetic variant (or multiple genetic 405 

variants) used as an instrumental variable for a risk factor in Mendelian randomization 406 

(MR) must meet the following conditions (12): (i) robustly associated with the exposure 407 

phenotype under investigation (relevance assumption); (ii) not associated with any 408 

confounding factors (independence assumption); and (iii) influence the outcome solely 409 

through the risk factor and not through any direct causal pathway (exclusion restriction 410 

assumption). For each plasma protein, the top SNP with the strongest association signal 411 

in cis-pQTL study was used as the single genetic instrument in the primary analysis. The 412 

odds ratios (ORs) or beta coefficients, along with their respective confidence intervals 413 

(CIs), quantifying the associations between plasma protein levels and the outcomes under 414 

study were calculated, and the associations were scaled to one standard deviation (SD) 415 

elevation in genetically inferred levels of circulating proteins. The heterogeneity in 416 

dependent instruments (HEIDI) test was employed as an instrument to distinguish 417 

proteins that were associated with the risk of CVDs or metabolic traits due to genetic 418 

variant sharing, rather than genetic linkage (46). The association with P value in HEIDI 419 

test < 0.01 was considered likely caused by pleiotropy and thus removed from the further 420 

analyses. We applied a threshold of Pmulti < 0.05 as suggestive evidence of statistical 421 

significance in SMR using multi-SNPs. To further account for the multiple tests across 422 

proteins with cis-SNPs, we established a false discovery rate (FDR) corrected P-value 423 

threshold of < 0.05 as evidence to determine the significant association between the 424 

proteins and the risk of diseases or metabolic traits, which helps control the possibility of 425 

false rejection of the null hypothesis and corrects for errors when conducting multiple 426 

comparisons. We used SMR analysis of disease GWAS data and pQTL summary data in 427 

UKBB as discovery study and SMR analysis of cis-pQTL summary data in deCODE and 428 

disease GWAS data as replication. 429 

 430 

Colocalization analysis 431 

We performed colocalization analysis using ‘coloc’ R package (47) to assess whether 432 

identified associations between proteins with CVDs and metabolic traits were consistent 433 

with a shared causal variant instead of being driven by linkage disequilibrium. The 434 

analysis assessed the support for the following five exclusive hypotheses: 1) no 435 

association with either trait; 2) association only with trait 1; 3) association only with trait 436 

2; 4) association with both traits, but with distinct causal variants for each; and 5) both 437 
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traits are associated, driven by a shared causal variant (48). Posterior probabilities were 438 

provided for each hypothesis test (H0, H1, H2, H3, and H4). In our study, we established 439 

the prior probabilities that a SNP is associated only with trait 1 (p1) at 1 × 10−4; the 440 

probability of the SNP being associated only with trait 2 (p2) at 1 × 10−4; and the 441 

probability of the SNP being associated with both traits (p12) at 1 × 10−5. Colocalization 442 

was considered to have high support if the posterior probability for shared causal variants 443 

(PPH4) was ≥0.8. Medium support for colocalization was defined as 0.5 < PPH4 < 0.8.  444 

 445 

Phenome-wide association study 446 

We used PheWAS to profile the possible side effects and indications of candidate 447 

proteins after their development into drugs. The PheWAS approach has been used to 448 

investigate the association between exposure to a set of genetic variants and thousands of 449 

phenotypes (49). GWASs data of diseases from the UK Biobank were conducted using 450 

the Scalable and Accurate Implementation of Generalised Mixed Model (SAIGE) to 451 

effectively address imbalances in case-control ratios (50). In the Lee UKBB dataset 452 

(https://www.leelabsg.org/resources), 783 phenotypes with more than 500 cases were 453 

chosen for phenome-MR analysis. The PheCODE schema was employed to define 454 

phenotypes for the analysis. We calculated the ORs and 95%CIs to evaluate the impact 455 

of variations in the levels of candidate proteins on the 783 phenotypes under 456 

investigation. Subsequently, to conduct a power estimation, we adjusted the P-values for 457 

multiple comparisons by applying the false discovery rate (FDR) correction, setting a P-458 

value threshold of 0.05, and employed a PHEIDI criterion greater than 0.01 to exclude 459 

associations displaying significant heterogeneity.  460 

 461 

Evaluation of druggable targets  462 

We explore the druggability of identified proteins using ChEMBL database, the Drug 463 

Gene Interaction Database (DGIdb; https://www.dgidb.org/) and Therapeutic Target 464 

Database (TTD; https://idrblab.org/ttd/). ChEMBL is a manually curated database of 465 

bioactive molecules with drug-like properties, which describes indications and 466 

mechanisms of drugs (16). DGIdb is an open-source search engine for drug-gene 467 

interactions and the druggable genome (17), and TTD systematically assesses targets via 468 

established druggability characteristics (18). We basically divided the identified 469 

candidate protein targets into three categories for discussion after integrating the 470 

information: 1) drugs that have been approved or in clinical trials to treat CVDs or 471 

metabolic diseases; 2) drugs targeted for diseases other than cardiovascular or metabolic 472 

diseases; 3) druggable potential targets. 473 

 474 

Pathway enrichment 475 

Information on genomes, biological pathways, molecular functions and drugs was 476 

obtained through METASCAPE (https://www.metascape.org/), which contains databases 477 

such as the Gene Ontology Consortium (GO), Kyoto Encyclopedia of Genes and 478 

Genomes (KEGG), WIKIPathways (WIKI) and others (51). We adjusted the parameters 479 

(Min Overlap=3, P Value Cutoff=0.01, Min Enrichment=1.5) to acquire accurate 480 
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pathway enrichment outcomes and Gene Ontology (GO) annotations for proteins 481 

associated with both CVDs and metabolic traits.  482 

 483 
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Data and materials availability: Comprehensive datasets encompassing genome-wide 708 

summary statistics for Atrial Fibrillation (AF), Heart Failure (HF), and Stroke can be 709 

accessed via the GWAS Catalog (GCST90104539, GCST009541, and GCST90104539). 710 

Detailed summary statistics for Coronary Artery Disease (CAD) and Peripheral Arterial 711 

Disease (PAD) are available on the Cardiovascular Disease Knowledge Portal (CVDKP), 712 

accessible at website: https://cvd.hugeamp.org/datasets.html. GWAS statistics on Venous 713 

Thromboembolism (VTE) are available through the deCODE genetics at 714 

https://www.decode.com/summarydata/. Genome-wide summary statistics for Systolic 715 

Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Pulse Pressure (PP), Alanine 716 

aminotransferase (ALT), Alkaline Phosphatase (ALP), γ-Glutamyl Transferase (GGT), 717 

Estimated Glomerular Filtration Rate (eGFR) and Uric Acid (UA) can be retrieved from 718 

the GWAS Catalog (GCST006624, GCST006630, GCST006629, GCST90013405, 719 

GCST90013406, GCST90013407, GCST90103634, and GCST008971) and the GWAS 720 

data on C-Reactive Protein (CRP) is also available at the UK Biobank: 721 

https://www.ebi.ac.uk/gwas/publications/35459240. GWAS summary statistics on Body 722 

Mass Index (BMI) and Waist Hip Ratio (WHR) are obtainable from the Genetic 723 

Investigation of ANthropometric Traits consortium (GIANT) at 724 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data725 

_files. Besides, genome-wide summary statistics for glycemic phenotypes, including 726 

Fasting Insulin (FI), Fasting Glucose (FG), Two-hour Glucose (2hGlu) and Glycated 727 

Hemoglobin levels (HbA1c), and lipidemic phenotypes, including Low-Density-728 

Lipoprotein Cholesterol (LDL-C), High-Density-Lipoprotein Cholesterol (HDL-C), 729 

Triglyceride (TG) and Total Cholesterol (TC), are obtained from the Meta-Analyses of 730 

Glucose and Insulin-related traits Consortium (MAGIC; 731 

https://magicinvestigators.org/downloads/) and Global Lipids Genetics Consortium 732 

(GLGC; http://csg.sph.umich.edu/willer/public/glgc-lipids2021/), respectively. 733 

Information on blood-based cis-pQTL, derived from both deCODE and UKB-PPP, can 734 

be found at https://www.decode.com/summarydata/ and 735 

https://www.synapse.org/#!Synapse:syn51365303, respectively. 736 

  737 
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Figures and Tables 738 

 739 

Fig. 1. Overview of this MR study design. 740 

After discovering that the top SNP with the strongest association signal in cis-pQTL 741 

study was used as the single genetic instrument, summary-data-based mendelian 742 

randomization (SMR) analysis comprehensively investigated the causal association of 743 

2,011 plasma proteins with 6 major CVDs and 19 metabolic phenotypes. Plasma 744 

proteome data were obtained from two large-scale protein quantitative trait loci (pQTL) 745 

studies, including the UK Biobank Pharma Proteomics Project (UKB-PPP; N = 34,557) 746 

and the deCODE Health study (N = 35,559). Furthermore, we pursued the exploration of 747 

therapeutic targets, and evaluated druggability of identified proteins using colocalization 748 

analysis. Additionally, a phenome-wide association study (PheWAS) was used to profile 749 

the possible side effects and indications of candidate proteins after their development 750 

into drugs. AF, atrial fibrillation; CAD, coronary artery disease; HF, heart failure; VTE, 751 

venous thromboembolism; PAD, peripheral artery disease; BMI, body mass index; 752 

WHR, waist hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, 753 

pulse pressure; FI, fasting insulin; FG, fasting glucose; 2hGlu, two-hour glucose; HbA1c, 754 

glycated hemoglobin levels; LDL, low-density-lipoprotein; HDL, high-density-755 

lipoprotein; TG, triglyceride; TC, total cholesterol; ALT, total cholesterol; ALP, total 756 

cholesterol; GGT, total cholesterol; eGFR, estimated glomerular filtration rate; UA, uric 757 

acid; CRP, C-reactive protein; PCSK9, proprotein convertase subtilisin/kexin type 9; 758 

INHBC, inhibin beta C chain; GUSB, beta-glucuronidase; APOH, apolipoprotein H; 759 

DUSP13B, dual-specificity phosphatase13B; LRIG1, leucine rich repeats and 760 

immunoglobulin like domains 1.  761 
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 762 

Fig. 2. SMR and colocalization analysis on the associations between plasma proteins 763 

and the risk of six kinds of cardiovascular diseases. 764 

(A) Manhattan plot for SMR analysis. Above the dotted line are proteins with corrected 765 

P value < 0.05 in false discovery rate. (B) Forest plot of SMR analysis. OR, odds ratio. 766 

(C) Colocalization analysis. Full name of proteins: DUSP13B, dual-specificity 767 

phosphatase13B; FBP1, fructose-1,6-bisphosphatase 1; GUSB, beta-glucuronidase; 768 

LRIG1, leucine rich repeats and immunoglobulin like domains 1; SPON1, spondin 1; 769 

TNFSF12, tumor necrosis factor superfamily member 12; ANGPTL4, angiopoietin-like 770 

4; APOH, apolipoprotein H; ASGR1, asialoglycoprotein receptor 1; COL6A3, collagen 771 

type VI alpha 3 chain; COMT, catechol-O-methyltransferase; GAS6, growth arrest 772 

specific 6; GSTT2B, glutathione S-transferase theta 2B; HGFAC, hepatocyte growth 773 

factor activator; INHBC, inhibin beta C chain; ITIH3, inter-alpha-trypsin inhibitor heavy 774 
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chain H3; LAYN, layilin; MIF, macrophage migration inhibitory factor; NADK, NAD 775 

kinase; PCSK9, proprotein convertase subtilisin/kexin type 9; PDE5A, 776 

phosphodiesterase type 5A; RARRES2, retinoic acid receptor responder 2; S100A14, 777 

S100 calcium binding protein A14; S100A16, S100 calcium binding protein A16; 778 

SCARF2, scavenger receptor class F member; TIMD4, T cell immunoglobulin and 779 

mucin domain containing 4; VAT1, vesicle amine transport 1; WARS1, tryptophanyl-780 

tRNA synthetase 1; F11, coagulation factor XI; F2, coagulation factor II; SCARA5, 781 

scavenger receptor class A member 5; AHSG, alpha 2-HS glycoprotein; ANXA2, 782 

annexin A2; APOC1, apolipoprotein C1; C2, complement C2; CACYBP, calcyclin 783 

binding protein; CD36, CD36 molecule; CELA2A, chymotrypsin like elastase 2A; 784 

EFEMP1, EGF containing fibulin extracellular matrix protein 1; FCGR2B, Fc gamma 785 

receptor IIb; GP6, glycoprotein VI platelet; ITIH1, inter-alpha-trypsin inhibitor heavy 786 

chain 1; PPP1R14A, protein phosphatase 1 regulatory inhibitor subunit 14A; PRDX6, 787 

peroxiredoxin 6; PROC, protein C; PROS1, protein S; SERPINE1, serpin family E 788 

member 1; SERPINE2, serpin family E member 2; SHBG, sex hormone-binding 789 

globulin; THBS2, thrombospondin 2.  790 
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 791 

Fig. 3. SMR and colocalization analysis on the associations between plasma proteins 792 

and the 17 kinds of metabolic phenotypes. 793 

(A) Heatmap of SMR analysis on the association between CVDs-related proteins and 17 794 

kinds of metabolic phenotypes. (B) Colocalization analysis.  795 
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 796 

Fig. 4. Phenotypes significantly associated with candidate proteins.  797 

The left side of the six candidate proteins represents cardiovascular diseases and 798 

metabolic phenotypes that with the support of colocalization, and the right side 799 

represents the phenotypes that are significantly associated with proteins identified by 800 

PheWAS. Thicker lines indicate a higher significance degree. 801 
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 802 

Category Phenotype Abbreviation PMID Source Population N N case N control 

Cardiovascular 

diseases 

Atrial fibrillation AF 30061737 

HUNT, UKB, 

deCODE, MGI, 

DiscovEHR, the 

AFGen Consortium 

European 1,030,836 60,620 970,216 

Coronary artery disease CAD 36474045 CDVKP European 1,165,690 181,522 984,168 

Venous 

thromboembolism 
VTE 36658437 

deCODE; FinnGen; 

CHB-CVDC; 

DBDS; UKB; 

InterMountain 

Healthcare 

European 1,500,861 81,190 1,419,671 

Heart failure HF 31919418 HERMES European 977,323 47,309 930,014 

Peripheral artery disease PAD 34601942 UKB European 511,634 12,086 499,548 

Stroke Stroke 36180795 
FinnGen; UKB; 

PSI 
European 1,308,460 73,652 1,234,808 

Anthropometric 

phenotypes 

Body mass index BMI 30124842 GIANT European 806,834 NA NA 

Waist hip ratio WHR 30124842 GIANT European 697,734 NA NA 

Blood pressure 

Systolic blood pressure SBP 30224653 UKB, ICBP European 757,601 NA NA 

Diastolic blood pressure DBP 30224653 UKB, ICBP European 757,601 NA NA 

Pulse pressure PP 30224653 UKB, ICBP European 757,601 NA NA 

Glycemic 

phenotypes 

Fasting insulin FI 34059833 MAGIC European 151,013 NA NA 

Fasting glucose FG 34059833 MAGIC European 200,622 NA NA 

Two-hour glucose 2hGlu 34059833 MAGIC European 63,396 NA NA 

glycated hemoglobin 

levels 
HbA1c 34059833 MAGIC European 146,806 NA NA 
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Table 1. GWAS data sources for cardiovascular diseases and metabolic traits. 803 

Note: UK Biobank Study, UKB; deCODE Health Study, deCODE; the Genetic Investigation of ANthropometric Traits consortium, 804 

GIANT; the Meta-Analyses of Glucose and Insulin-related traits Consortium, MAGIC; Global Lipids Genetics Consortium, GLGC;  805 

International Consortium of Blood Pressure-Genome Wide Association Studies, ICBP; the Nord-Trøndelag Health Study, HUNT; the 806 

Michigan Genomics Initiative, MGI; the Heart Failure Molecular Epidemiology for Therapeutic Targets, HERMES; the Dutch 807 

Parelsnoer Initiative Cerebrovascular Disease Study Group, PSI; the FinnGen Consortium, FinnGen; Copenhagen Hospital Biobank 808 

Cardiovascular Disease Cohort, CHB-CVDC; the Danish Blood Donor Study, DBDS. 809 

  810 

Lipidemic 

phenotypes 

Low-density-lipoprotein 

cholesterol 
LDL-C 34887591 GLGC European 1,231,289 NA NA 

High-density-

lipoprotein cholesterol 
HDL-C 34887591 GLGC European 1,244,580 NA NA 

Triglyceride TG 34887591 GLGC European 1,253,277 NA NA 

Total cholesterol TC 34887591 GLGC European 1,320,016 NA NA 

Liver-related 

phenotypes 

Alanine 

aminotransferase 
ALT 33972514 UKB European 437,267 NA NA 

Alkaline phosphatase ALP 33972514 UKB European 437,438 NA NA 

γ-glutamyl transferase GGT 33972514 UKB European 437,194 NA NA 

Kidney-related 

phenotypes 

Estimated glomerular 

filtration rate 
eGFR 34272381 

CKDGen 

Consortium, UKB 
European 1,004,040 NA NA 

Uric acid UA 31578528 UKB European 288,649 NA NA 

Inflammatory 

biomarker 
C-reactive protein CRP 35459240 UKB European 575,531 NA NA 
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